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Instability of a horizontal layer of viscoelastic liquid 
on an oscillating plane 

By B. S. DANDAPAT AND A. S. GUPTA 
Department of Mathematics, Indian Institute of Technology, Kharagpur 

(Received 16 August 1974 and in revised form 23 June 1975) 

Secular instability of unsteady flow of a horizontal layer of viscoelastic liquid set 
in motion by simple harmonic motion of the lower boundary in its own plane is 
investigated. Using an extension of Floquet’s theory for ordinary differential 
equations, the stability of long waves is studied by a regular perturbation 
method. The elastic parameter of the fluid is found to be destabilizing and 
stabilizing in different ranges of frequency. 

1. Introduction 
It has been recognized that problems of stability of unsteady basic flows 

present several difficulties in view of the fact that their time dependence pre- 
cludes the use of an exponential time factor for the perturbation quantities. 
Benjamin & Ursell(l954) found that, when a cylinder containing inviscid liquid 
with a free surface is moved up and down with a simple harmonic acceleration of 
amplitude a,, the liquid may be unstable even if a, is much smaller than the 
gravitational acceleration g. Donnelly, Reif & Suhl (1962) experimentally 
demonstrated that the onset of instability in the form of Taylor ring vortices in 
the flow between two concentric cylinders with the inner rotating and the outer 
at rest can be delayed when the angular velocity of inner cylinder is modulated 
about its mean value, While considering Kelvin-Helmholtz instability of an 
interface between two streams of fluid in relative tangential motion, Kelly (1964) 
found that unsteadiness in the basic flows gives rise to parametric amplification 
of the interface motion. Rosenblat (1968) investigated the stability of time- 
periodic inviscid azimuthal flows between coaxial circular cylinders to axisym- 
metric disturbances. 

To the best of the authors’ knowledge, the stability characteristics of an 
unsteady basic flow of a non-Newtonian liquid have not received adequate 
attention despite the fact that the literature abounds in studies of the stability 
of steady basic flows of non-Newtonian liquids. Recently Yih (1968) investigated 
the stability of a horizontal layer of viscous liquid with a free surface, the flow 
being caused by the oscillation of the lower rigid boundary in its own plane. The 
purpose of the present investigation is to extend this problem to the class of non- 
Newtonian (viscoelastic) liquids known as incompressible second-order fluids, 
and the stability characteristics of long waves in such flows are studied by a 
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FIGURE 1. Sketch of the physical problem. 

perturbation method due to Yih. In  our investigation the primary flow is com- 
pletely unsteady in the sense that it has no steady part whatsoever and we study 
the instability of this flow with respect to infinitesimal disturbances. 

2. Mathematical formulation 
A horizontal layer of a second-order fluid of depth d and density p is set into 

motion by movement of the lower rigid boundary with velocity Vcos Qt in the 
X direction, !2 being the frequency and V the amplitude (figure 1). Using the 
postulate of gradually fading memory, Coleman & No11 (1960) derived the 
following constitutive equation for an incompressible second-order fluid (which 

where T is the stress tensor, p is an indeterminate pressure and vo, Po and vo are 
material constants. The rate-of-strain tensor A(l) and the acceleration tensor h2) 

4 ) i j  = vi, j + vj, i, (2) are defined by 

4 ) i j  = a i , j+ap , i+2vm, ivm, j~  (3) 
where ai's are the acceleration components, given by av,/at + w,vi,,. It is important 
to point out that such a fluid exhibits the normal-stress effects which are generally 
observed in flows of dilute polymer solutions, e.g. polyethylene oxide in water 
(Polyox) or polyisobutylene in cetane. Further, (1) is valid for low shear rates and 
v, < 0 from thermodynamic considerations. 

is isotropic) : 7ij = - P ~ i , + T o A ( l ) i j + P o A ( l ) i k A ( l ) k j + ~ 0 ~ ( 2 ) i j Y  (1) 

We introduce the following dimensionless variables : 

x = Xld ,  y = Y/d ,  T = Vt/d,  (4) 

t being the time. The equation governing the basic flow reduces, on using (l), to 

(") (5) 
au ia2u 

ar R ay2 aye aT 
where U = U/ V ,  R = p Vd/To, M = - Vo/pda, (6 )  

-=--- 

E ( Y , t )  being the velocity of the basic flow in the X direction. The boundary 
conditions are vanishing shear stress at the free surface and the no-slip condition 
a t  the rigid wall and are given by 

av a au --MR- (-) = o  at y=o, 
aY ar a2 (7) 

U = c o s w  at y =  1, ( 8 )  
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with w = Qd/V. Assuming aU/ay = 0 at 7 = 0, equation (7) reduces to 

aU/ay = 0 at y = 0 for 7 > 0. ( 9) 

(10) 

W = 2cosh[p1(1+iS)y]ei"T, (11) 

A,  = cosh/3, C O S / ~ ~ S / ~ [ C O S ~ / ~ ~ S + S ~ ~ ~ ~ / ~ ~ ] ,  (12) 

(13) 

(14) 

The solution of ( 5 )  satisfying (8) and (9) is 

U(Y,T)  = A,[W+ W*-itanhp1tan(/3,S)(W- W*)], 
where an asterisk denotes a complex conjugate and 

Rw{ (1 + M2R2u2)& - MRw} * 
IB1 = [ 2( 1 + M2R2w2) 1 .  
S = ( l + 2 M 2 B 2 ~ 2 ) * + M R ~ .  

Notice that U as given by (10) is real. 

the perturbed velocity components and pressure 
We now perturb the flow given by (1 0) and take as the dimensionless forms of 

u = U + d ,  v = v', p = P+p', (16) 

using as units of velocity and pressure V and p V 2  respectively. Introducing the 
stream function @(z, y, T )  such that u' = a@/ay and v' = - 8+/8x and following 
Yih (1968) exactly but incorporating the terms due to viscoelasticity, the 
modified Orr-Sommerfeld equation is 

"/a7 + iaU) {$,g - a2$ + Jf($,,,, - 2a24,, +a")) 
- iMauu,,, $ - iau,, 41 = a4$ - 2a2$,, + #,,2/2/J ( 6, 

where a subscript denotes differentiation and 

$ = $(y, 7 )  e i a x .  (17) 

Similarly the boundary conditions on the tangential and normal stress at the 
free surface are 

[UVJO,  7 )  -HRu&(O, 7)I h(7) - " (a /& + iau) ($yg + a2$)I,=o 
+[$,,+a24++iccMRU~,$],=, = 0 (18) 

and i a [ P 2  + 4a21 h(0) + B-l[$v,, - 3a2$,Iu=, - iaJf[U,, $g - u,,, 
- [(a/a7+iaU) {$y+M($1121g- 3a2$,)}],=o = 0. (19) 

I n  the above equations, F is the Froude number V/(gd)s ,  8, = T/pV2d,  T being 
the surface tension, and the deformation of the free surface 7 is taken as 

7 = h(7)eiax. (20) 

The no-slip conditions at the lower boundary are 

= O J  #y(lJT) = O.  

Further, the kinematic condition at the free surface is 
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Thus the stability characteristics of the flow are governed by (16) subject to 
the boundary conditions (18), (19), (21) and (22). 

We next study the above differential system by an extension of the well-known 
Floquet theory for ordinary differential equations with periodic coefficients 
(Coddington &, Levinson 1965, p. 78) to the realm of partial differential equa- 
tions. In  fact this linear stability analysis for long-wave disturbances follows 
exactly that in Yih (1968) with r$(y,~)  and h ( ~ )  taken as 

(23) 

(24) 

$(y, 7) = exp (p14 [$,(Y, 7) + 4 ( y ,  7) + a 2 r $ 2 ( ~ ,  7) + ... I, 
h(7) = exp (p17) [h,,(~)   ah,(^) + a2h2(7) + . . .I, 

where the functions q5j and hj are periodic in T and the Floquet exponent p1 has 
the form 

p1 = 8,+a0,+a20z+.... (25) 

Omitting the details of the analysis, we eventually h d  that Oo = 0, = 0 and the 
flow is unstable or stable according as O2 is positive or negative. This criterion 
turns out to be 

(26) 

where v' = tanhpl. tan PI 8 (27) 

48&( 1 + v ' ~ )  (v' + MRo) MRw 3A3 1 + v ' ~ )  
(Ri - R;) 5 P-,, 

1 + M2R2w2 wR 

and R; and RL are respectively the real parts of 

2( 1 - M2R2d) i 8i cosh [PI( 1 + id)] 
[(B4sinh2PI +isin2/llS) tanh{P1(1 -ti#))] + 

S2 cash [PI( 1 - is)] 

4(1-M2R2w2)P1i [(S3 cosh 2p1 + i  cos 2p,S) tanh(p,(l +is))] and 
S 

Sip1( l + is) sinh [/Il( 1 + iX)] 
+ cosh [pl( 1 - is)] * (29) 

In  the notation of Yih (1968), A = 2A1, v = v', R, = +Bi and R, = QR;1 when 
M = 0. In this case, (26) gives the criterion for instability or stability as 

which agrees with Yih (1968). 
In  the stability criterion (26), the left-hand side depends on wR and wRM only, 

and these parameters do not involve the velocity scale V.  Therefore for an oblique 
wave, with V effectively reduced to VcosO, only the right-hand side of (26) is 
altered, from to (F cos O)-2. This shows that two-dimensional disturbances 
will be more unstable than the three-dimensional ones, i.e. Squire's theorem 
holds. Of course, the fact that the left-hand side of (26) is independent of V would 
have been more apparent had the proper Reynolds number scaling been used, 
e.g. V in ( 6 )  replaced by V* = Qd. 

It may be noted that the neglect of the surface-tension term S,a2 compared 
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FIGURE 2. Variation of L with /3 for several values of M .  
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with F-2 in (19) (as we have done in our analysis), although formally correct for a 
sufficiently small and B and T fixed, may be rather restrictive. For 

where h is the physical wavelength, and this is small only for A 2 10 cm. However 
this restriction may be relaxed on replacing .P2 by P2 + S,a2 in (26). 

Figure 2 shows the variation of L, the left-hand side of (26), with respect to 
/3 = (&wR)* for different values of the elastic parameter M .  The calculations have 
been performed on an IBM 1620 Digital Computer. Each curve has a maximum 
such that when P2 exceeds this maximum the %ow is stable, As M increases, the 
maximum of each curve also increases, and this establishes the destabilizing role 
of the elastic properties of the liquid for a certain frequency range. Equation (26) 
shows that, when L > 0, there can be instability of the flow even for small 
Reynolds numbers R ifS is sufficiently large. It may be noticed from figure 2 that, 
for certain ranges of the frequency parameter p ,  L becomes negative, which 
means that in this range the oscillation of the plate stabilizes the flow against 
long-wave disturbances. It is of some interest to note that this frequency range 
of stabilized motion increases with increasing M .  This non-monotonic behaviour 
of the elastic parameter in the different frequency ranges contrasts sharply with 
the corresponding behaviour when the basic flow is steady. In fact, the visco- 
elastic terms in a second-order fluid were found to be destabilizing in the case of 
a steady basic flow of a liquid layer down an inclined plane (Gupta 1967). Of 
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course these results are valid only when the elastic parameter is sufficiently small 
(say, M N and the frequency of the disturbance is not too large. In the 
present problem we have also taken M - so that the second-order fluid 
model can be shown to be a consistent constitutive approximation (Denn, Sun & 
Rushton 1971). It may be noted that in figure 2 we have also included the case 
M = 0.01, for which MRw N 0.03 at PI = 1-2. For larger values, MRw clearly 
becomes large and invalidates the use of the second-order fluid model. 

3. Discussion 
We now make several comments regarding the validity of the model of the 

second-order fluid used in our analysis. This model may give rise to spurious 
instability in the form of instability of the rest state (Gupta 1967; Platten & 
Schechter 1970) if the approximations involved in deriving (1) are treated as if 
they are exact. In  fact, although Gupta’s (1967) stability analysis of low- 
frequency surface waves in a layer of a second-order fluid flowing down an 
inclined plane is correct, his treatment of high-frequency shear waves by the 
same model is of doubtful validity, as pointed out by Craik (1968). This is due to 
the possible breakdown of the model for very high frequencies, and, using a con- 
stitutive relation which takes account of the entire strain history of the motion, 
Craik showed that such anomalous behaviour does not occur. He also pointed out 
that a second-order fluid should not be expected to yield significant results at 
large wavenumbers (equivalently, small disturbance times). If, however, the dis- 
turbance time scale is large compared with the characteristic time scale (relaxa- 
tion time) of the fluid, then the second-order fluid model is an internally consistent 
approximation to the stress-relaxing fluid due to Oldroyd (1950). As was pointed 
out by Porteous & Denn (1972), this would happen if M < 1 and RM < 1. Since 
we have considered surface wave instability for sufficiently small M ,  these 
conditions are fulfilled in addition to a < 1. 

We conclude our discussion by pointing out the justification for the physical 
significance of the problem. In  fact there are several considerations which 
provide motivation for this study. 

(i) In  view of the importance of viscoelastic liquids like dilute polymer solu- 
tions in chemical industries, particularly the part played by viscoelasticity in 
drag reduction, several theoretical and experimental investigations of flow of such 
liquids have been carried out. Many interesting features are revealed through 
study of the response of such liquids to unsteady inputs, e.g. the measurement 
of viscoelastic properties of polymer solutions subject to oscillatory stress or 
strain by Tanner & Simmons (1967) and by Dodge & Krieger (1971). But so far 
no attempt has been made to see whether such unsteady flows are dynamically 
possible or not. The present study is specifically addressed to this problem. In  
fact it  is of some interest to see whether unsteadiness in the basic flow of such 
liquids leads to  parametric amplification of disturbances. 

(ii) Chan Man Fong & Walters (1965) investigated the linear stability of plane 
Poiseuille flow of a second-order fluid and found elasticity to be destabilizing. 
This destabilizing influence of viscoelasticity appears to be in agreement with the 
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experimental results of Jones & Maddock (1966) and Barnes & Walters (1967), 
but not with those of Giles & Pettit (1967). Our study reveals the novel feature of 
viscoelasticity playing a stabilizing role in a certain frequency range in addition 
to its usual destabilizing influence. We feel that this study may throw some light 
on the apparent discrepancy between various experimental studies like those we 
have mentioned above. 

The reason why elasticity in our analysis is stabilizing for a large frequency of 
oscillation of the plate may be traced to the fact that the basic unsteady flow is 
of the boundary-layer type for high frequencies (akin to Stokes layer) and there 
is strong experimental evidence to support a stabilizing influence of elasticity on 
boundary-layer flows (Merrill, Smith & Chung 1966). However the exact 
mechanism of this stabilizing influence of elasticity is still not very clear. 

We dedicate this paper to Professor C.-S. Yih, who is an unfailing source of help 
and inspiration to us. 

Appendix 

[equation (23)] for #(y, 7 )  (or h(7)) in powers of a are in order. 
A few remhks regarding the convergence of the regular perturbation expansion 

We start with an ordinary differential equation 

where the pj(a, x) are polynomials or entire functions of a and x. A solution of 
this equation in powers of a can be proved to be convergent for all finite values 
of a. A simple example isf' + af = 0, whose solution (exp ( - ax)) in powers of a is 
convergent for all finite values of a. Similarly the solution of the Orr-Sommerfeld 
equation in powers of a (as in the long-wave analysis of Yih 1963) can be shown 
to be convergent for a smooth basic velocity profile. The extension of this to  
partial differential equations is direct. The coefficients of the various partial 
derivatives of q5 in the equation (16), governing #(y,~), are also clearly entire 
functions of a (and y ) ,  the coefficient of the highest-order derivative being a con- 
stant, independent of a. Thus we may expect the series expansion in a to be 
convergent at any rate for small a. 

However, a rigorous proof of the convergence of the expansion (23) could 
perhaps be given by the method of majorants. If it is possible to show that the #s 
in (23) are uniformly bounded in the interval 0 < y < 1, such that I#&, .)I < B 
for a l l j  (B  being a fixed constant), then the series in (23) is majorized by the series 
B( 1 +a + aa + . . . ), which will converge when a < 1. This establishes the absolute 
and uniform convergence of the series (23). But since the &'s become increasingly 
complex with increasing j and no general pattern for the 6, emerges from the 
analysis, the proof of uniform boundedness of the q+ presents insuperable diffi- 
culties. We therefore leave the rigorous proof of convergence of (23) to more 
capable minds. All that we can say is that the series (23) is likely to be convergent 
for sufficiently small a, an assumption which is consistent with our long-wave 
analysis. 
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